1 The following molecules are structural isomers with molecular formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$.

Y
Z

(a) Which of the molecules would exhibit optical isomerism?

A W
B XC YD Z
(b) Which of the molecules would exhibit geometric isomerism?A WB XC YD Z
(c) Which of the molecules would produce iodoform when reacting with iodine in alkaline solution?A W onlyB W and XC W and YD W and Z
(d) Which of the molecules would be oxidized to a carboxylic acid using acidified sodium dichromate(VI)?A X only
B Z onlyC X and YD X, Y and Z
(e) Which of the molecules would form a crystalline product with 2,4-dinitrophenylhydrazine?A W only
B W and XC W, X and ZD X only

2 Which of the following compounds is not chiral?
A

B

D

(Total for Question = 1 mark)

3 When one optically active isomer of 3-chloro-3-methylhexane reacts with hydroxide ions to form 3-methylhexan-3-ol, a racemic mixture forms because

A 3-chloro-3-methylhexane forms a carbocation intermediate.
B the reaction is a nucleophilic substitution.
\square C 3-chloro-3-methylhexane forms a five-bonded transition state.
\square D 3-methylhexan-3-ol contains a chiral carbon.
(Total for Question = 1 mark)

4 Select the word that best describes the effect of a chiral molecule on the plane of plane-polarized light. The plane of polarization of light is

A reflected.B refracted.C resolved.D rotated.

(Total for Question = 1 mark)

5 Which of the following amino acids is optically active and produces an approximately neutral solution when dissolved in water?

A $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$B

D

6 Which of the following compounds is a Z isomer and contains a chiral carbon atom?A

B

C

D

(Total for Question 1 mark)

7 Which of these compounds, whose formulae are shown below, cannot exist as a racemic mixture?

A $\mathrm{CH}_{2} \mathrm{ClCHClCOOH}$

B HOOCCHClCOOH

C $\mathrm{CH}_{3} \mathrm{CHClCOOH}$D $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$8 Which of the following compounds has both optical and $E-Z$ isomers?A $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$B $\mathrm{CH}_{3} \mathrm{CHClCH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$C $\quad \mathrm{CH}_{3} \mathrm{CCl}=\mathrm{CClCH}_{3}$D $\mathrm{CH}_{3} \mathrm{CHBrCH}=\mathrm{CHCl}$

9 A white organic compound, \mathbf{X}, is optically active and reacts with ninhydrin to give a coloured product. The structural formula of \mathbf{X} could be
\square A

B

C

10 Ketones react with hydrogen cyanide, HCN , in the presence of cyanide ions, CN^{-}.
(a) Which of these ketones does not form a racemic mixture in this reaction?
$\square \mathbf{A} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
$\square \mathbf{C} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{3}$D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
(b) This type of reaction is classified asA nucleophilic substitution.B nucleophilic addition.C electrophilic addition.D electrophilic substitution.

11 Which of the following has both optical and E-Z isomers?
A $\mathrm{ClCH}_{2} \mathrm{CHClCH}=\mathrm{CH}_{2} \mathrm{CH}_{2}$
B $\mathrm{CH}_{2}=\mathrm{CClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
C ClCH $2 \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{Cl}$

D $\mathrm{CHCl}=\mathrm{CHCHClCH}_{3}$

(Total for Question 1 mark)

12 One optically active isomer of 2-chlorobutane reacts with hydroxide ions to form butan-2-ol.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHClCH}_{3}+\mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+\mathrm{Cl}
$$

The organic product is a mixture of enantiomers becauseA butan-2-ol contains a chiral carbon atom.B the reaction is a nucleophilic substitution.C 2-chlorobutane forms a carbocation intermediate.
D 2-chlorobutane forms a five-bonded transition state.
(Total for Question 1 mark)

13 Which of these four amino acids could not rotate the plane of plane-polarised light?A $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$B $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{COOH}\right) \mathrm{COOH}$C $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$D $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{2} \mathrm{SH}\right) \mathrm{COOH}$

